Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.039
1.
Nat Commun ; 15(1): 3684, 2024 May 01.
Article En | MEDLINE | ID: mdl-38693181

The metal-nucleic acid nanocomposites, first termed metal-nucleic acid frameworks (MNFs) in this work, show extraordinary potential as functional nanomaterials. However, thus far, realized MNFs face limitations including harsh synthesis conditions, instability, and non-targeting. Herein, we discover that longer oligonucleotides can enhance the synthesis efficiency and stability of MNFs by increasing oligonucleotide folding and entanglement probabilities during the reaction. Besides, longer oligonucleotides provide upgraded metal ions binding conditions, facilitating MNFs to load macromolecular protein drugs at room temperature. Furthermore, longer oligonucleotides facilitate functional expansion of nucleotide sequences, enabling disease-targeted MNFs. As a proof-of-concept, we build an interferon regulatory factor-1(IRF-1) loaded Ca2+/(aptamer-deoxyribozyme) MNF to target regulate glucose transporter (GLUT-1) expression in human epidermal growth factor receptor-2 (HER-2) positive gastric cancer cells. This MNF nanodevice disrupts GSH/ROS homeostasis, suppresses DNA repair, and augments ROS-mediated DNA damage therapy, with tumor inhibition rate up to 90%. Our work signifies a significant advancement towards an era of universal MNF application.


Aptamers, Nucleotide , DNA, Catalytic , Stomach Neoplasms , Stomach Neoplasms/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Humans , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Cell Line, Tumor , DNA, Catalytic/metabolism , DNA, Catalytic/chemistry , Animals , Receptor, ErbB-2/metabolism , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Reactive Oxygen Species/metabolism , Mice , DNA Repair , DNA Damage , Glutathione/metabolism , Glutathione/chemistry , Nucleic Acids/metabolism , Nucleic Acids/chemistry
2.
Molecules ; 29(9)2024 May 03.
Article En | MEDLINE | ID: mdl-38731608

In this paper, Cu-BTC derived mesoporous CuS nanomaterial (m-CuS) was synthesized via a two-step process involving carbonization and sulfidation of Cu-BTC for colorimetric glutathione detection. The Cu-BTC was constructed by 1,3,5-benzenetri-carboxylic acid (H3BTC) and Cu2+ ions. The obtained m-CuS showed a large specific surface area (55.751 m2/g), pore volume (0.153 cm3/g), and pore diameter (15.380 nm). In addition, the synthesized m-CuS exhibited high peroxidase-like activity and could catalyze oxidation of the colorless substrate 3,3',5,5'-tetramethylbenzidine to a blue product. Peroxidase-like activity mechanism studies using terephthalic acid as a fluorescent probe proved that m-CuS assists H2O2 decomposition to reactive oxygen species, which are responsible for TMB oxidation. However, the catalytic activity of m-CuS for the oxidation of TMB by H2O2 could be potently inhibited in the presence of glutathione. Based on this phenomenon, the colorimetric detection of glutathione was demonstrated with good selectivity and high sensitivity. The linear range was 1-20 µM and 20-300 µM with a detection limit of 0.1 µM. The m-CuS showing good stability and robust peroxidase catalytic activity was applied for the detection of glutathione in human urine samples.


Colorimetry , Copper , Glutathione , Hydrogen Peroxide , Nanostructures , Glutathione/analysis , Glutathione/chemistry , Colorimetry/methods , Copper/chemistry , Nanostructures/chemistry , Catalysis , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Porosity , Oxidation-Reduction , Phthalic Acids/chemistry , Humans , Benzidines/chemistry , Limit of Detection
3.
Colloids Surf B Biointerfaces ; 238: 113884, 2024 Jun.
Article En | MEDLINE | ID: mdl-38565006

Benzalkonium chloride (BAK) is the most commonly-used preservative in topical ophthalmic medications that may cause ocular surface inflammation associated with oxidative stress and dry eye syndrome. Glutathione (GSH) is an antioxidant in human tears and able to decrease the proinflammatory cytokine release from cells and reactive oxygen species (ROS) formation. Carboxymethyl cellulose (CMC), a hydrophilic polymer, is one of most commonly used artificial tears and can promote the corneal epithelial cell adhesion, migration and re-epithelialization. However, most of commercial artificial tears provide only temporary relief of irritation symptoms and show the short-term treatment effects. In the study, 3-aminophenylboronic acid was grafted to CMC for increase of mucoadhesive properties that might increase the precorneal retention time and maintain the effective therapeutic concentration on the ocular surface. CMC was modified with different degree of substitution (DS) and characterized by Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. Phenylboronic acid (PBA)-grafted CMC hydrogels have interconnected porous structure and shear thinning behavior. Modification of CMC with high DS (H-PBA-CMC) shows the strong bioadhesive force. The optimal concentration of GSH to treat corneal epithelial cells (CECs) was evaluated by cell viability assay. H-PBA-CMC hydrogels could sustained release GSH and decrease the ROS level. H-PBA-CMC hydrogels containing GSH shows the therapeutic effects in BAK-damaged CECs via improvement of inflammation, apoptosis and cell viability. After topical administration of developed hydrogels, there was no ocular irritation in rabbits. These results suggested that PBA-grafted CMC hydrogels containing GSH might have potential applications for treatment of dry eye disease.


Benzalkonium Compounds , Boronic Acids , Carboxymethylcellulose Sodium , Epithelium, Corneal , Glutathione , Hydrogels , Hydrogels/chemistry , Hydrogels/pharmacology , Glutathione/metabolism , Glutathione/chemistry , Benzalkonium Compounds/chemistry , Benzalkonium Compounds/pharmacology , Carboxymethylcellulose Sodium/chemistry , Carboxymethylcellulose Sodium/pharmacology , Boronic Acids/chemistry , Epithelium, Corneal/drug effects , Epithelium, Corneal/metabolism , Epithelium, Corneal/pathology , Humans , Cell Survival/drug effects , Animals , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Rabbits , Reactive Oxygen Species/metabolism , Cell Line
4.
ACS Nano ; 18(19): 12453-12467, 2024 May 14.
Article En | MEDLINE | ID: mdl-38686995

Traditional magnetic resonance imaging (MRI) contrast agents (CAs) are a type of "always on" system that accelerates proton relaxation regardless of their enrichment region. This "always on" feature leads to a decrease in signal differences between lesions and normal tissues, hampering their applications in accurate and early diagnosis. Herein, we report a strategy to fabricate glutathione (GSH)-responsive one-dimensional (1-D) manganese oxide nanoparticles (MONPs) with improved T2 relaxivities and achieve effective T2/T1 switchable MRI imaging of tumors. Compared to traditional contrast agents with high saturation magnetization to enhance T2 relaxivities, 1-D MONPs with weak Ms effectively increase the inhomogeneity of the local magnetic field and exhibit obvious T2 contrast. The inhomogeneity of the local magnetic field of 1-D MONPs is highly dependent on their number of primary particles and surface roughness according to Landau-Lifshitz-Gilbert simulations and thus eventually determines their T2 relaxivities. Furthermore, the GSH responsiveness ensures 1-D MONPs with sensitive switching from the T2 to T1 mode in vitro and subcutaneous tumors to clearly delineate the boundary of glioma and metastasis margins, achieving precise histopathological-level MRI. This study provides a strategy to improve T2 relaxivity of magnetic nanoparticles and construct switchable MRI CAs, offering high tumor-to-normal tissue contrast signal for early and accurate diagnosis.


Contrast Media , Magnetic Resonance Imaging , Manganese Compounds , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Animals , Mice , Contrast Media/chemistry , Humans , Magnetic Fields , Glutathione/chemistry , Oxides/chemistry , Cell Line, Tumor , Glioma/diagnostic imaging , Glioma/pathology , Particle Size , Magnetite Nanoparticles/chemistry
5.
J Mater Chem B ; 12(19): 4724-4735, 2024 May 15.
Article En | MEDLINE | ID: mdl-38655674

We have developed a highly sensitive and reliable fluorescence resonance energy transfer (FRET) probe using nitro-dopamine (ND) and dopamine (DA) coated MnO2 nanosheet (ND@MnO2 NS and DA@MnO2 NS) as an energy acceptor and MoS2 quantum dots (QDs) as an energy donor. By employing surface-modified MnO2 NS, we can effectively reduce the fluorescence intensity of MoS2 QDs through FRET. It can reduce MnO2 NS to Mn2+ and facilitate the fluorescence recovery of the MoS2 QDs. This ND@MnO2 NS@MoS2 QD-based nanoprobe demonstrates excellent sensitivity to GSH, achieving an LOD of 22.7 nM in an aqueous medium while exhibiting minimal cytotoxicity and good biocompatibility. Moreover, our sensing platform shows high selectivity to GSH towards various common biomolecules and electrolytes. Confocal fluorescence imaging revealed that the nanoprobe can image GSH in A549 cells. Interestingly, the ND@MnO2 NS nanoprobe demonstrates no cytotoxicity in living cancer cells, even at concentrations up to 100 µg mL-1. Moreover, the easy fabrication and eco-friendliness of ND@MnO2 NS make it a rapid and simple method for detecting GSH. We envision the developed nanoprobe as an incredible platform for real-time monitoring of GSH levels in both extracellular and intracellular mediums, proving valuable for biomedical research and clinical diagnostics.


Disulfides , Dopamine , Glutathione , Manganese Compounds , Molybdenum , Nanocomposites , Oxides , Quantum Dots , Humans , Manganese Compounds/chemistry , Disulfides/chemistry , Oxides/chemistry , Quantum Dots/chemistry , Molybdenum/chemistry , Glutathione/analysis , Glutathione/chemistry , Dopamine/analysis , Nanocomposites/chemistry , Fluorescence Resonance Energy Transfer , A549 Cells , Particle Size , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis
6.
Carbohydr Polym ; 336: 122138, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38670763

Water-soluble silver nanoclusters (AgNCs) as a new type of fluorescent material have attracted much attention for their remarkable optical properties and excellent cytocompatibility. However, it is still challenging to synthesize water-soluble AgNCs with good cytocompatibility and excellent fluorescence. Herein, the dialdehyde nanofibrillated cellulose (DANFC)- reduced water-soluble AgNCs capped by glutathione (GSH) with tunable fluorescence emissions were first reported. The DANFC provides a mild reduction environment and crystal growth system for the coordination between silver ions and GSH compared to conventional methods using strong reducing agents. The AgNCs with intense red fluorescence (R-AgNCs@GSH, size ∼2.24 nm) and green fluorescence (G-AgNCs@GSH, size ∼1.93 nm) were produced by varying the ratios of silver sources and ligands, and could maintain stable fluorescence intensity over 6 months. Moreover, the CCK-8 study demonstrated that the R-AgNCs@GSH and G-AgNCs@GSH reduced by DANFC of excellent cytocompatibility (cell viability >90 %) and enable precise multicolor intracellular imaging of Hela cells in 1 h. This work proposes a novel method to synthesize water-soluble AgNCs with tunable fluorescence emission at room temperature based on the classical silver- mirror reaction (SMR) using DANFC as reducing agent, and the synthesized fluorescent AgNCs have great potential as novel luminescent nanomaterials in biological research.


Cellulose , Metal Nanoparticles , Silver , Solubility , Water , Silver/chemistry , Humans , Cellulose/chemistry , HeLa Cells , Metal Nanoparticles/chemistry , Water/chemistry , Glutathione/chemistry , Nanofibers/chemistry , Cell Survival/drug effects , Optical Imaging/methods , Fluorescence , Fluorescent Dyes/chemistry
7.
J Mass Spectrom ; 59(5): e5020, 2024 May.
Article En | MEDLINE | ID: mdl-38659191

Exposure to arsenic can cause various biological effects by increasing the production of reactive oxygen species (ROS). Selenium acts as a beneficial element by regulating ROS and limiting heavy metal uptake and translocation. There are studies on the interactive effects of As and Se in plants, but the antagonistic and synergistic effects of these elements based on their binding to glutathione (GSH) molecules have not been studied yet. In this study, we aimed to investigate the antagonistic or synergistic effects of As and Se on the binding mechanism of Se and As with GSH at pH 3.0, 5.0, or 6.5. The interaction of As and Se in Se(SG)2 + As(III) or As(SG)3 + Se(IV) binary systems and As(III) + Se(IV) + GSH ternary system were examined depending on their ratios via liquid chromatography diode array detector/electrospray mass spectrometry (LC-DAD/MS) and liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). The results showed that the formation of As(GS)3 was not detected in the As(III) + Se(SG)2 binary system, indicating that As(III) did not affect the stability of Se(SG)2 complex antagonistically. However, in the Se(IV) + As(SG)3 binary system, the addition of Se(IV) to As(SG)3 affected the stability of As(SG)3 antagonistically. Se(IV) reacted with GSH, disrupting the As(SG)3 complex, and consequently, Se(SG)2 formation was measured using LC-MS/DAD. In the Se(IV) + GSH + As(III) ternary system, Se(SG)2 formation was detected upon mixing As(III), Se(IV), and GSH. The increase in the concentration of As(III) did not influence the stability of the Se(SG)2 complex. Additionally, Se(IV) has a higher affinity than As(III) to the GSH, regardless of the pH of the solution. In both binary and ternary systems, the formation of the by-product glutathione trisulfide (GSSSG) was detected using LC-ESI-MS/MS.


Arsenites , Glutathione , Selenious Acid , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Glutathione/chemistry , Glutathione/metabolism , Arsenites/chemistry , Selenious Acid/chemistry , Tandem Mass Spectrometry/methods , Spectrometry, Mass, Electrospray Ionization/methods , Chromatography, Liquid/methods
8.
Dalton Trans ; 53(16): 6974-6982, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38563069

Tubular structured composites have attracted great interest in catalysis research owing to their void-confinement effects. In this work, we synthesized a pair of hollow N-doped carbon microtubes (NCMTs) with Fe3O4 nanoparticles (NPs) encapsulated inside NCMTs (Fe3O4@NCMTs) and supported outside NCMTs (NCMTs@Fe3O4) while keeping other structural features the same. The impact of structural effects on the catalytic activities was investigated by comparing a pair of hollow-structured nanocomposites. It was found that the Fe3O4@NCMTs possessed a higher peroxidase-like activity when compared with NCMTs@Fe3O4, demonstrating structural superiority of Fe3O4@NCMTs. Based on the excellent peroxidase-like catalytic activity and stability of Fe3O4@NCMTs, an ultra-sensitive colorimetric method was developed for the detection of H2O2 and GSH with detection limits of 0.15 µM and 0.49 µM, respectively, which has potential application value in biological sciences and biotechnology.


Carbon , Hydrogen Peroxide , Carbon/chemistry , Hydrogen Peroxide/chemistry , Catalysis , Magnetite Nanoparticles/chemistry , Surface Properties , Glutathione/chemistry , Biomimetic Materials/chemistry , Nitrogen/chemistry , Colorimetry , Biomimetics
9.
Molecules ; 29(8)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38675567

Two-dimensional black phosphorus (2D BP) has attracted significant research interest in the field of biomedical applications due to its unique characteristics, including high biocompatibility, impressive drug-loading efficiency, phototherapeutic ability, and minimal side effects. However, its puckered honeycomb lattice structure with lone-pair electrons of BP leads to higher sensitivity and chemical reactivity towards H2O and O2 molecules, resulting in the degradation of the structure with physical and chemical changes. In our study, we synthesize polyethylene glycol (PEG) and glutathione-stabilized doxorubicin drug-assembled Au nanoparticle (Au-GSH-DOX)-functionalized BP nanosheets (BP-PEG@Au-GSH-DOX) with improved degradation stability, biocompatibility, and tumor-targeting ability. Transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy indicate the nanoscale degradation behavior of synthesized nanoconjugates in three different environmental exposure conditions, and the results demonstrate the remarkable nanoscale stability of BP-PEG@Au-GSH-DOX against the degradation of BP, which provides significant interest in employing 2D BP-based nanotherapeutic agents for tumor-targeted cancer phototherapy.


Doxorubicin , Glutathione , Gold , Metal Nanoparticles , Phosphorus , Polyethylene Glycols , Doxorubicin/chemistry , Doxorubicin/pharmacology , Gold/chemistry , Phosphorus/chemistry , Polyethylene Glycols/chemistry , Metal Nanoparticles/chemistry , Glutathione/chemistry , Humans , Drug Carriers/chemistry , Nanostructures/chemistry
10.
Food Chem ; 449: 138944, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38613993

Sulfite addition is a common tool for ensuring wines' oxidative stability via the activity of its free and weakly bound molecular fraction. As a nucleophile, bisulfite forms covalent adducts with wine's most relevant electrophiles, such as carbonyls, polyphenols, and thiols. The equilibrium in these reactions is often represented as dissociation rather than formation. Recent studies from our laboratory demonstrate, first, the acetaldehyde sulfonate dissociation, and second, the chemical stability of cysteine and epicatechin sulfonates under wine aging conditions. Thus, the objective of this study was to monitor by 1H NMR the binding specificity of known carbonyl-derived SO2 binders (acetaldehyde and pyruvic acid) in the presence of S-containing compounds (cysteine and glutathione). We report that during simulated wine aging, the sulfur dioxide that is rapidly bound to carbonyl compounds will be released and will bind to cysteine and glutathione, demonstrating the long-term sulfur dioxide binding potential of S-containing compounds. These results are meant to serve as a complement to existing literature reviews focused on molecular markers related to wines' oxidative stability and emphasize once more the importance of S-containing compounds in wine aging chemical mechanisms.


Sulfhydryl Compounds , Wine , Wine/analysis , Kinetics , Sulfhydryl Compounds/chemistry , Oxidation-Reduction , Sulfur Dioxide/chemistry , Cysteine/chemistry , Cysteine/metabolism , Acetaldehyde/chemistry , Sulfites/chemistry , Proton Magnetic Resonance Spectroscopy , Magnetic Resonance Spectroscopy , Glutathione/chemistry , Glutathione/metabolism
11.
Mikrochim Acta ; 191(5): 282, 2024 04 23.
Article En | MEDLINE | ID: mdl-38652326

A novel dual-mode fluorometric and colorimetric sensing platform is reported for determining glutathione S-transferase (GST) by utilizing polyethyleneimine-capped silver nanoclusters (PEI-AgNCs) and cobalt-manganese oxide nanosheets (CoMn-ONSs) with oxidase-like activity. Abundant active oxygen species (O2•-) can be produced through the CoMn-ONSs interacting with dissolved oxygen. Afterward, the pink oxDPD was generated through the oxidation of colorless N,N-diethyl-p-phenylenediamine (DPD) by O2•-, and two absorption peaks at 510 and 551 nm could be observed. Simultaneously, oxDPD could quench the fluorescence of PEI-AgNCs at 504 nm via the inner filter effect (IFE). However, in the presence of glutathione (GSH), GSH prevents the oxidation of DPD due to the reducibility of GSH, leading to the absorbance decrease at 510 and 551 nm. Furthermore, the fluorescence at 504 nm was restored due to the quenching effect of oxDPD on decreased PEI-AgNCs. Under the catalysis of GST, GSH and1-chloro-2,4-dinitrobenzo (CDNB) conjugate to generate an adduct, initiating the occurrence of the oxidation of the chromogenic substrate DPD, thereby inducing a distinct colorimetric response again and the significant quenching of PEI-AgNCs. The detection limits for GST determination were 0.04 and 0.21 U/L for fluorometric and colorimetric modes, respectively. The sensing platform illustrated reliable applicability in detecting GST in real samples.


Cobalt , Colorimetry , Glutathione Transferase , Manganese Compounds , Metal Nanoparticles , Oxides , Polyethyleneimine , Silver , Polyethyleneimine/chemistry , Silver/chemistry , Cobalt/chemistry , Oxides/chemistry , Manganese Compounds/chemistry , Metal Nanoparticles/chemistry , Colorimetry/methods , Glutathione Transferase/metabolism , Glutathione Transferase/chemistry , Limit of Detection , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Humans , Glutathione/chemistry , Oxidation-Reduction , Biosensing Techniques/methods , Phenylenediamines/chemistry , Nanostructures/chemistry
12.
Mol Pharm ; 21(5): 2394-2405, 2024 May 06.
Article En | MEDLINE | ID: mdl-38647653

Doxorubicin (DOX) is one of the most commonly used anticancer drugs; however, its clinical application is greatly limited due to its toxicity and chemotherapy resistance. The delivery of DOX by liposomes (Lipos) can improve the blood circulation time in vivo and reduce toxic side effects, but the drug's accumulation in the tumor is often insufficient for effective treatment. In this study, we present a calcium cross-linked liposome gel for the encapsulation of DOX, demonstrating its superior long-term release capabilities compared to conventional Lipos. By leveraging this enhanced long-term release, we can enhance drug accumulation within tumors, ultimately leading to improved antitumor efficacy. Lipos were prepared using the thin-film dispersion method in this study. We utilized the ion-responsiveness of glutathione-gelatin (GSH-GG) to form the gel outside the Lipos and named the nanoparticles coated with GSH-GG on the outside of Lipos as Lipos@GSH-GG. The average size of Lipos@GSH-GG was around 342.9 nm, with a negative charge of -25.6 mV. The in vitro experiments revealed that Lipos@GSH-GG exhibited excellent biocompatibility and slower drug release compared to conventional Lipos. Further analysis of cellular uptake and cytotoxicity demonstrated that Lipos@GSH-GG loading DOX (DOX&Lipos@GSH-GG) exhibited superior long-term release effects and lower toxic side effects compared to Lipos loading DOX (DOX&Lipos). Additionally, the findings regarding the long-term release effect in vivo and the tumor accumulation within tumor-bearing mice of Lipos@GSH-GG suggested that, compared to Lipos, it demonstrated superior long-term release capabilities and achieved greater drug accumulation within tumors. In vivo antitumor efficacy experiments showed that DOX&Lipos@GSH-GG demonstrated superior antitumor efficacy to DOX&Lipos. Our study highlights Lipos@GSH-GG as a promising nanocarrier with the potential to enhance efficacy and safety by means of long-term release effects and may offer an alternative approach for effective antitumor therapy in the future.


Calcium , Doxorubicin , Drug Liberation , Glutathione , Liposomes , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Doxorubicin/pharmacokinetics , Animals , Mice , Liposomes/chemistry , Humans , Calcium/chemistry , Calcium/metabolism , Glutathione/chemistry , Female , Gels/chemistry , Gelatin/chemistry , Mice, Nude , Nanoparticles/chemistry , Mice, Inbred BALB C , Cell Line, Tumor , Xenograft Model Antitumor Assays , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacokinetics , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Cross-Linking Reagents/chemistry , Drug Delivery Systems/methods
13.
Nanoscale ; 16(17): 8479-8494, 2024 May 02.
Article En | MEDLINE | ID: mdl-38590261

Catalytic generation of toxic hydroxyl radicals (˙OH) from hydrogen peroxide (H2O2) is an effective strategy for tumor treatment in chemodynamic therapy (CDT). However, the intrinsic features of the microenvironment in solid tumors, characterized by limited H2O2 and overexpressed glutathione (GSH), severely impede the accumulation of intracellular ˙OH, posing significant challenges. To circumvent these critical issues, in this work, a CaO2-based multifunctional nanocomposite with a surface coating of Cu2+ and L-buthionine sulfoximine (BSO) (named CaO2@Cu-BSO) is designed for enhanced CDT. Taking advantage of the weakly acidic environment of the tumor, the nanocomposite gradually disintegrates, and the exposed CaO2 nanoparticles subsequently decompose to produce H2O2, alleviating the insufficient supply of endogenous H2O2 in the tumor microenvironment (TME). Furthermore, Cu2+ detached from the surface of CaO2 is reduced by H2O2 and GSH to Cu+ and ROS. Then, Cu+ catalyzes H2O2 to generate highly cytotoxic ˙OH and Cu2+, forming a cyclic catalysis effect for effective CDT. Meanwhile, GSH is depleted by Cu2+ ions to eliminate possible ˙OH scavenging. In addition, the decomposition of CaO2 by TME releases a large amount of free Ca2+, resulting in the accumulation and overload of Ca2+ and mitochondrial damage in tumor cells, further improving CDT efficacy and accelerating tumor apoptosis. Besides, BSO, a molecular inhibitor, decreases GSH production by blocking γ-glutamyl cysteine synthetase. Together, this strategy allows for enhanced CDT efficiency via a ROS storm generation strategy in tumor therapy. The experimental results confirm and demonstrate the satisfactory tumor inhibition effect both in vitro and in vivo.


Calcium , Copper , Glutathione , Hydrogen Peroxide , Nanocomposites , Tumor Microenvironment , Nanocomposites/chemistry , Nanocomposites/therapeutic use , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism , Glutathione/metabolism , Glutathione/chemistry , Animals , Humans , Mice , Calcium/metabolism , Calcium/chemistry , Copper/chemistry , Copper/pharmacology , Tumor Microenvironment/drug effects , Cell Line, Tumor , Buthionine Sulfoximine/pharmacology , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Reactive Oxygen Species/metabolism , Hydroxyl Radical/metabolism , Hydroxyl Radical/chemistry , Mice, Inbred BALB C
14.
Biomater Sci ; 12(10): 2626-2638, 2024 May 14.
Article En | MEDLINE | ID: mdl-38526801

Hepatocellular carcinoma (HCC) is one of the deadliest malignant tumors and the development of effective therapeutics against HCC is urgently needed. A novel quinazoline derivative 04NB-03 (Qd04) has been proved to be highly effective against HCC without obvious toxic side-effects. However, the poor water solubility and low bioavailability in vivo severely limit its clinical application. In addition, Qd04 kills tumor cells by inducing an accumulation of endogenous reactive oxygen species (ROS), which is highly impeded by the overexpression of glutathione (GSH) in tumor cells. Herein, we designed a disulfide cross-linked polyamino acid micelle to deliver Qd04 for HCC therapy. The disulfide linkage not only endowed a tumor-targeted delivery of Qd04 by responding to tumor cell GSH but also depleted GSH to achieve increased levels of ROS generation, which improved the therapeutic efficiency of Qd04. Both in vitro and in vivo results demonstrated that the synthesized nanodrug exerted good anti-hepatoma effects, which provided a potential application for HCC therapy in clinics.


Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Polymers , Quinazolines , Reactive Oxygen Species , Reactive Oxygen Species/metabolism , Humans , Quinazolines/chemistry , Quinazolines/pharmacology , Quinazolines/administration & dosage , Animals , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Polymers/chemistry , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Mice , Drug Carriers/chemistry , Micelles , Glutathione/metabolism , Glutathione/chemistry , Hep G2 Cells , Cell Line, Tumor , Mice, Inbred BALB C , Mice, Nude
15.
Int J Pharm ; 655: 124024, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38537920

Controlling the drug release and restricting its presence in healthy organs is extremely valuable. In this study, mesoporous silica nanoparticles (MSN) as the core, loaded with paclitaxel (PTX), were coated with a non-porous silica shell functionalized with disulfide bonds. The nanoparticles were further coated with polyethylene glycol (PEG) via disulfide linkages. We analyzed the physicochemical properties of nanoparticles, including hydrodynamic size via Dynamic Light Scattering (DLS), zeta potential, X-ray Diffraction (XRD) patterns, Fourier-Transform Infrared (FTIR) spectra, and imaging through Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). The drug release profile in two distinct glutathione (GSH) concentrations of 2 µM and 10 µM was measured. The cellular uptake of nanoparticles by MCF-7 cell line was determined using Confocal Laser Scanning Microscopy (CLSM) images and flow cytometry. Furthermore, the cell viability and the capability of nanoparticles to induce apoptosis in MCF-7 cell line were studied using the MTT assay and flow cytometry, respectively. Our investigations revealed that the release of PTX from the drug delivery system was redox-responsive. Also, results indicated an elevated level of cellular uptake and efficient induction of apoptosis, underscoring the promising potential of this redox-responsive drug delivery system for breast cancer therapy.


Breast Neoplasms , Nanoparticles , Humans , Female , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Breast Neoplasms/drug therapy , Silicon Dioxide/chemistry , Drug Delivery Systems , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Glutathione/chemistry , Oxidation-Reduction , Disulfides , Drug Carriers/chemistry , Porosity
16.
J Mater Chem B ; 12(14): 3509-3520, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38516824

Both chemodynamic therapy and photodynamic therapy, based on the production of reactive oxygen (ROS), have excellent potential in cancer therapy. However, the abnormal redox homeostasis in tumor cells, especially the overexpressed glutathione (GSH) could scavenge ROS and reduce the anti-tumor efficiency. Therefore, it is essential to develop a simple and effective tumor-specific drug delivery system for modulating the tumor microenvironment (TME) and achieving synergistic therapy at the tumor site. In this study, self-assembled nanoparticles (named CDZP NPs) were developed using copper ion (Cu2+), doxorubicin (Dox), zinc phthalocyanine (ZnPc) and a trace amount of poly(2-(di-methylamino)ethylmethacrylate)-poly[(R)-3-hydroxybutyrate]-poly(2-(dimethylamino)ethylmethacrylate) (PDMAEMA-PHB-PDMAEMA) through chelation, π-π stacking and hydrophobic interaction. These triple factor-responsive (pH, laser and GSH) nanoparticles demonstrated unique advantages through the synergistic effect. Highly controllable drug release ensured its effectiveness at the tumor site, Dox-induced chemotherapy and ZnPc-mediated fluorescence (FL) imaging exhibited the distribution of nanoparticles. Meanwhile, Cu2+-mediated GSH-consumption not only reduced the intracellular ROS elimination but also produced Cu+ to catalyze hydrogen peroxide (H2O2) and generated hydroxyl radicals (˙OH), thereby enhancing the chemodynamic and photodynamic therapy. Herein, this study provides a green and relatively simple method for preparing multifunctional nanoparticles that can effectively modulate the TME and improve synergetic cancer therapy.


Methacrylates , Methylmethacrylates , Nanoparticles , Neoplasms , Nylons , Humans , Copper/therapeutic use , Reactive Oxygen Species , Hydrogen Peroxide/therapeutic use , Nanoparticles/chemistry , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Neoplasms/drug therapy , Glutathione/chemistry , Oxidation-Reduction , Tumor Microenvironment
17.
Biomater Sci ; 12(9): 2341-2355, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38497292

Recently, gas therapy has emerged as a promising alternative treatment for deep-seated tumors. However, some challenges regarding insufficient or uncontrolled gas generation as well as unclear therapeutic mechanisms restrict its further clinical application. Herein, a well-designed nanoreactor based on intracellular glutathione (GSH)-triggered generation of sulfur dioxide (SO2) gas to augment oxidative stress has been developed for synergistic chemodynamic therapy (CDT)/sonodynamic therapy (SDT)/SO2 gas therapy. The nanoreactor (designed as CCM@FH-DNs) is constructed by employing iron-doped hollow mesoporous silica nanoparticles as carriers, the surface of which was modified with the SO2 prodrug 2,4-dinitrobenzenesulfonyl (DNs) and further coated with cancer cell membranes for homologous targeting. The CCM@FH-DNs can not only serve as a Fenton-like agent for CDT, but also as a sonosensitizer for SDT. Importantly, CCM@FH-DNs can release SO2 for SO2-mediated gas therapy. Both in vitro and in vivo evaluations demonstrate that the CCM@FH-DNs nanoreactor performs well in augmenting oxidative stress for SO2 gas therapy-enhanced CDT/SDT via GSH depletion and glutathione peroxidase-4 enzyme deactivation as well as superoxide dismutase inhibition. Moreover, the doped iron ions ensure that the CCM@FH-DNs nanoreactors enable magnetic resonance imaging-guided therapy. Such a GSH-triggered SO2 gas therapy-enhanced CDT/SDT strategy provides an intelligent paradigm for developing efficient tumor microenvironment-responsive treatments.


Glutathione , Oxidative Stress , Sulfur Dioxide , Oxidative Stress/drug effects , Glutathione/metabolism , Glutathione/chemistry , Sulfur Dioxide/chemistry , Sulfur Dioxide/pharmacology , Humans , Animals , Mice , Nanoparticles/chemistry , Ultrasonic Therapy , Mice, Inbred BALB C , Silicon Dioxide/chemistry , Cell Line, Tumor , Female
18.
J Fluoresc ; 34(3): 1441-1451, 2024 May.
Article En | MEDLINE | ID: mdl-38530561

Aspirin is a commonly used nonsteroidal anti-inflammatory drug, associated with many adverse effects. The adverse effects of aspirin such as tinnitus, Reye's syndrome and gastrointestinal bleeding are caused due to conversion of aspirin into its active metabolite salicylic acid after oral intake. Glutathione is a naturally occurring antioxidant produced by the liver and nerve cells in the central nervous system. It helps to metabolize toxins, break down free radicles, and support immune function. This study aims to investigate and explore the possibility of inhibiting aspirin to salicylic acid conversion in presence of glutathione at a molecular level using spectroscopic techniques such as UV-Visible absorption, time-Resolved and time-dependent fluorescence and theoretical DFT/ TD-DFT calculations. The results of steady state fluorescence spectroscopy and time-dependent fluorescence indicated that the aspirin to salicylic acid conversion is considerably inhibited in presence of glutathione. Further, the results presented here might have significant clinical implications for individuals with variations in glutathione level.


Aspirin , Density Functional Theory , Glutathione , Salicylic Acid , Spectrometry, Fluorescence , Aspirin/pharmacology , Aspirin/chemistry , Aspirin/metabolism , Glutathione/metabolism , Glutathione/chemistry , Salicylic Acid/metabolism , Salicylic Acid/chemistry , Salicylic Acid/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Fluorescence , Molecular Structure
19.
Anal Chim Acta ; 1295: 342323, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38355224

As the reliable biomarkers to evaluate the diabetes and neurological disease, sensitive and accurate detection of glucose and glutathione (GSH) in biological samples is necessary for early precaution and diagnosis of related-diseases. The single red upconversion nanoparticles (UCNPs) especially with core-shell structure can penetrate deeper biological tissues and cause less energy loss and thus have higher sensitivity and accuracy. Additionally, an enzyme-controlled cascade signal amplification (ECSAm) strategy will further enhance sensitivity. Herein, using single red UCNPs with core-shell structure as the luminescent material, a fluorescent sensor based on ECSAm was developed for the highly sensitive and accurate detection of glucose and GSH. Under the optimal conditions, the limits of detection for glucose and GSH by fluorescent method were 0.03 µM and 0.075 µM, separately. This assay was used to analyze the content of glucose and GSH in serum samples, and the obtained data was close to that of commercial blood glucose and GSH detection kit. The developed sensor platform based on single red UCNPs with core-shell structure and ECSAm can be a promising method for the accurate and sensitive detection of glucose and GSH in biological samples.


Glucose , Nanoparticles , Luminescence , Nanoparticles/chemistry , Glutathione/chemistry
20.
Molecules ; 29(3)2024 Jan 23.
Article En | MEDLINE | ID: mdl-38338299

Monitoring the level of biothiols in organisms would be beneficial for health inspections. Recently, 3-(2'-nitro vinyl)-4-phenylselenyl coumarin as a fluorescent probe for distinguishing the detection of the small-molecule biothiols cysteine/homocysteine (Cys/Hcy) and glutathione (GSH) was developed. By introducing 4-phenyselenium as the active site, the probe CouSeNO2/CouSNO2 was capable of detecting Cys/Hcy and GSH in dual fluorescence channels. Theoretical insights into the fluorescence sensing mechanism of the probe were provided in this work. The details of the electron excitation process in the probe and sensing products under optical excitation and the fluorescent character were analyzed using the quantum mechanical method. All these theoretical results would provide insight and pave the way for the molecular design of fluorescent probes for the detection of biothiols.


Cysteine , Fluorescent Dyes , Fluorescent Dyes/chemistry , Cysteine/chemistry , Glutathione/chemistry , Coumarins/chemistry , Spectrometry, Fluorescence/methods , Homocysteine
...